Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N'-(Phenyliminodimethylene)diprop-2-enamide hemihydrate

Dhanapal Tamilvendan,^a Ganesan Venkatesa Prabhu,^a Frank R. Fronczek^b and Nagarajan Vembu^c*

^aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, ^bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and ^cDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India

Correspondence e-mail: vembu57@yahoo.com

Received 3 May 2009; accepted 12 May 2009

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.120; data-to-parameter ratio = 20.3.

In the title compound, $C_{14}H_{17}N_3O_2 \cdot 0.5H_2O$, the asymmetric unit consists of an *N*,*N'*-(phenyliminodimethylene)diprop-2enamide molecule and one half-molecule of water, with the O atom of the latter having 2 site symmetry. The supramolecular architecture is framed by the interplay of two-dimensional networks of both $O-H \cdots O$ and $N-H \cdots O$ interactions supported by $C-H \cdots O$ and edge-to-face $C-H \cdots \pi$ interactions.

Related literature

For a detailed description of Mannich bases and their applications, see: Friedrich *et al.* (1991); Bohme & Mannich (1955); Afsah *et al.* (2008); Terzioglu *et al.* (2006); Ravichandran *et al.* (2007); Pandeya *et al.* (2000). For hydrogen bonds, see: Desiraju & Steiner (1999); Jeffrey (1997). For hydrogen-bond motifs, see: Bernstein *et al.* (1995); Etter (1990).

Experimental

Crystal data $C_{14}H_{17}N_3O_2 \cdot 0.5H_2O$ $M_r = 268.31$ Orthorhombic, *Pbcn* a = 17.074 (2) Å b = 9.8366 (15) Å c = 16.316 (2) Å

 $V = 2740.3 (6) Å^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 90 K $0.30 \times 0.23 \times 0.12 \text{ mm}$ Data collection

Nonius KappaCCD diffractometer	9467 measured reflections
with an Oxford Cryosystems	5065 independent reflections
Cryostream cooler	3885 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.030$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	249 parameters
$vR(F^2) = 0.120$	All H-atom parameters refined
S = 1.02	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
5065 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N5-H5\cdotsO11C4-H4A\cdotsO7C15-H15\cdotsO7OW-HW\cdotsO7iN1-H1\cdotsO11iiC2-H2B\cdotsCg1iiiC8-H8\cdotsCg1iv$	$\begin{array}{c} 0.876 \ (15) \\ 0.984 \ (13) \\ 0.953 \ (14) \\ 0.845 \ (17) \\ 0.891 \ (15) \\ 0.966 \ (13) \\ 0.966 \ (16) \end{array}$	2.318 (15) 2.366 (13) 2.563 (14) 1.990 (17) 2.089 (15) 3.178 2.571 (15)	3.0476 (11) 2.8089 (12) 3.4922 (14) 2.8193 (9) 2.9651 (11) 3.874 3.4444 (12)	140.8 (12) 106.5 (9) 165.1 (10) 166.7 (16) 167.4 (14) 130.40 150.6 (13)
	. ,	. ,	. ,	. ,

Symmetry codes: (i) -x + 2, y, $-z - \frac{1}{2}$; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (iii) -x + 2, -y + 2, -z; (iv) $-x + \frac{1}{2}$, $y - \frac{3}{2}$, z. *Cg*1 is the centroid of the C14–C19 ring.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2820).

References

- Afsah, E. M., Hammouda, M., Khalifa, M. M. & Al-shahaby, E. H. (2008). Z. Naturforsch. Teil B, 63, 577–584.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bohme, H. & Mannich, C. (1955). Chem. Ber. 88, I-XXVI.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Friedrich, C., Dallman, A., Mannich, C. & Pharmazie, D. (1991). *Pharm. Ztg*, 136, 691–701.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press Inc.
- Nonius, B. V. (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pandeya, S. N., Sriram, D., De Clercq, E. & Nath, G. (2000). Arzneim Forsch. 35, 249–255.
- Ravichandran, V., Mohan, S. & Suresh Kumar, K. (2007). Arkivoc Newslett. 14, 51–57.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Terzioglu, N., Karali, N., Gursoy, A., Pannecouque, C., Leysen, P., Paeshuyse, J., De Neyts, J. & Clercq, E. (2006). Arkivoc, pp. 109–118.

supplementary materials

Acta Cryst. (2009). E65, o1343 [doi:10.1107/S1600536809017784]

N,*N*'-(Phenyliminodimethylene)diprop-2-enamide hemihydrate

D. Tamilvendan, G. Venkatesa Prabhu, F. R. Fronczek and N. Vembu

Comment

The Mannich reaction is a three-component condensation in which a compound containing an active H atom (substrate) is allowed to react with an aldehyde or ketone and a primary or secondary amine with concomitant release of water to produce a new base known as a Mannich base, in which the active hydrogen is replaced by an aminomethyl group. The formation of both carbon-carbon and carbon-nitrogen bond in this aminomethylation process makes the Mannich reaction an extremely useful synthetic transformation. Mannich bases have wide application in the areas of pharmaceutics (Friedrich *et al.*, 1991) and macromolecular chemistry (Bohme & Mannich, 1955; Afsah *et al.*, 2008). Some Mannich bases have antimalarial, antiviral (Terzioglu *et al.*, 2006) properties while some other act as antihistamines, anti-inflammatories (Ravichandran *et al.*, 2007) and antimicrobials (Pandeya *et al.*, 2000). The present investigation is aimed at the elucidation of the molecular and crystal structure of the title compound which was obtained by the Mannich condendation of aniline, formaldehyde and acrylamide.

The asymmetric unit of (I) consists of *N*,*N*-[(phenylimino)dimethanediyl]bisprop-2-enamide and half a water molecule (Fig. 1).

The crystal structure of (I) is stabilized by O—H···O, N—H···O and C—H···O interactions. The range of H···O distances (Table 1) found in (I) agrees with those found for O—H···O & N—H···O (Jeffrey, 1997) and C—H···O hydrogen bonds (Desiraju & Steiner, 1999). Each of N5—H5···O11 and C15—H15···O7 interactions generate a ring motif of graph set (Bernstein *et al.*, 1995; Etter, 1990), S(8). An S(5) motif is formed by C4—H4A···O7. The Ow—Hw···O7ⁱ, N1—H1···O11ⁱⁱ and N5—H5···O11 interactions together generate an extended two dimensional network along the base vectors, [0 1 0] & [1 0 0] and through the plane (0 0 - 1). The supramolecular architecture is completed by the interplay of two edge to face C—H···π interactions (Table 1).

Experimental

7.1 g (0.1 mol) acrylamide and 10 ml (0.1*M*) of formaldehyde were dissolved in minimum amount of distilled water and the contents were mixed well to get a clear solution. 10 ml (0.1*M*) of aniline was added to the mixture in small installments with stirring. After 48 hr colorless solid was obtained which was washed with ethanol and dried at 343 K. The resulting organic compound was recrystallized from hot ethanol to yield the diffraction quality crystals of the title compound.

Refinement

All H-atoms were located in difference maps and their positions and isotropic displacement parameters were freely refined.

Figures

Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.

Fig. 2. The molecular packing viewed along the *b*-axis. Dashed lines represent the O—H···O, N—H···O and C—H···O interactions within the lattice.

N,*N*'-(Phenyliminodimethylene)diprop-2-enamide hemihydrate

Crystal data

$C_{14}H_{17}N_3O_2 \cdot 0.5H_2O_1$	$D_{\rm x} = 1.301 {\rm ~Mg~m^{-3}}$
$M_r = 268.31$	Melting point: 398 K
Orthorhombic, Pbcn	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 34434 reflections
a = 17.074 (2) Å	$\theta = 2.5 - 33.0^{\circ}$
b = 9.8366 (15) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 16.316 (2) Å	T = 90 K
V = 2740.3 (6) Å ³	Fragment, colorless
Z = 8	$0.30\times0.23\times0.12~mm$
$F_{000} = 1144$	

Data collection

Nonius KappaCCD	
diffractometer with an Oxford Cryosystems Cryo- stream cooler	3885 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.030$
Monochromator: graphite	$\theta_{\text{max}} = 33.0^{\circ}$
T = 90 K	$\theta_{\min} = 2.7^{\circ}$
ω and ϕ scans	$h = -26 \rightarrow 26$
Absorption correction: none	$k = -15 \rightarrow 15$
9467 measured reflections	$l = -24 \rightarrow 24$
5065 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.045$	All H-atom parameters refined
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0597P)^2 + 0.7128P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
5065 reflections	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
249 parameters	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
Defense of the location of the interval	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

ractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.80007 (5)	0.89440 (8)	0.13232 (5)	0.01594 (16)
C2	0.88056 (6)	0.84769 (10)	0.12071 (6)	0.01569 (17)
N3	0.89921 (5)	0.80690 (8)	0.03825 (5)	0.01545 (16)
C4	0.91579 (6)	0.66584 (10)	0.02225 (6)	0.01665 (18)
N5	0.85082 (5)	0.59623 (8)	-0.01804 (5)	0.01671 (16)
C6	0.85921 (6)	0.52348 (9)	-0.08750 (6)	0.01635 (18)
07	0.92364 (4)	0.50903 (8)	-0.12139 (5)	0.02232 (17)
C8	0.78566 (6)	0.46251 (11)	-0.11941 (6)	0.0210 (2)
C9	0.78569 (7)	0.37886 (13)	-0.18250 (7)	0.0267 (2)
C10	0.73876 (5)	0.80842 (9)	0.13486 (5)	0.01421 (17)
O11	0.74626 (4)	0.68455 (7)	0.12367 (4)	0.01761 (15)
C12	0.66234 (6)	0.87457 (10)	0.15303 (6)	0.01837 (19)
C13	0.59676 (6)	0.80534 (12)	0.16321 (7)	0.0247 (2)
C14	0.90493 (5)	0.90267 (10)	-0.02424 (6)	0.01502 (17)
C15	0.91823 (5)	0.86297 (11)	-0.10565 (6)	0.01785 (19)
C16	0.92620 (6)	0.96063 (12)	-0.16649 (6)	0.0226 (2)
C17	0.92139 (6)	1.09817 (12)	-0.14964 (7)	0.0249 (2)
C18	0.90668 (6)	1.13762 (11)	-0.06939 (7)	0.0229 (2)
C19	0.89752 (6)	1.04206 (10)	-0.00757 (7)	0.01868 (19)

supplementary materials

OW	1.0000	0.37093 (12)	-0.2500	0.0356 (3)
H1	0.7899 (9)	0.9829 (15)	0.1371 (9)	0.028 (4)*
H2A	0.8901 (7)	0.7705 (14)	0.1559 (8)	0.018 (3)*
H2B	0.9140 (7)	0.9206 (14)	0.1393 (8)	0.015 (3)*
H4A	0.9616 (8)	0.6566 (13)	-0.0140 (8)	0.018 (3)*
H4B	0.9274 (7)	0.6225 (13)	0.0743 (8)	0.017 (3)*
Н5	0.8046 (9)	0.6058 (14)	0.0045 (9)	0.027 (3)*
H8	0.7378 (9)	0.4864 (15)	-0.0914 (10)	0.035 (4)*
H9A	0.7377 (8)	0.3357 (15)	-0.2005 (9)	0.029 (4)*
H9B	0.8348 (9)	0.3542 (15)	-0.2119 (10)	0.036 (4)*
H12	0.6636 (9)	0.9714 (16)	0.1589 (10)	0.034 (4)*
H13A	0.5471 (8)	0.8504 (15)	0.1751 (8)	0.027 (3)*
H13B	0.5952 (10)	0.7040 (19)	0.1577 (11)	0.045 (5)*
H15	0.9212 (7)	0.7696 (15)	-0.1208 (8)	0.018 (3)*
H16	0.9353 (9)	0.9338 (15)	-0.2219 (9)	0.031 (4)*
H17	0.9294 (9)	1.1688 (16)	-0.1936 (10)	0.038 (4)*
H18	0.9027 (8)	1.2309 (16)	-0.0557 (9)	0.029 (4)*
H19	0.8871 (8)	1.0736 (14)	0.0458 (9)	0.022 (3)*
HW	1.0232 (10)	0.4232 (17)	-0.2832 (11)	0.048 (5)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0168 (4)	0.0121 (3)	0.0189 (4)	-0.0001 (3)	0.0009 (3)	-0.0017 (3)
C2	0.0163 (4)	0.0169 (4)	0.0138 (4)	0.0001 (3)	-0.0014 (3)	-0.0017 (3)
N3	0.0195 (4)	0.0131 (3)	0.0137 (3)	0.0013 (3)	0.0007 (3)	-0.0011 (3)
C4	0.0184 (4)	0.0141 (4)	0.0175 (4)	0.0024 (3)	-0.0011 (3)	-0.0010 (3)
N5	0.0166 (4)	0.0167 (4)	0.0168 (4)	-0.0006 (3)	0.0038 (3)	-0.0035 (3)
C6	0.0181 (4)	0.0153 (4)	0.0157 (4)	0.0014 (3)	0.0026 (3)	-0.0010 (3)
O7	0.0176 (3)	0.0259 (4)	0.0235 (4)	0.0004 (3)	0.0054 (3)	-0.0080 (3)
C8	0.0177 (4)	0.0243 (5)	0.0210 (5)	-0.0002 (4)	0.0027 (3)	-0.0048 (4)
C9	0.0219 (5)	0.0343 (6)	0.0241 (5)	0.0014 (4)	-0.0020 (4)	-0.0094 (4)
C10	0.0172 (4)	0.0133 (4)	0.0122 (4)	-0.0002 (3)	-0.0010 (3)	0.0001 (3)
011	0.0213 (3)	0.0118 (3)	0.0197 (3)	0.0002 (2)	0.0004 (3)	-0.0009 (2)
C12	0.0191 (4)	0.0148 (4)	0.0212 (5)	0.0011 (3)	0.0008 (3)	-0.0012 (3)
C13	0.0204 (5)	0.0241 (5)	0.0294 (5)	-0.0018 (4)	0.0037 (4)	-0.0072 (4)
C14	0.0119 (4)	0.0163 (4)	0.0169 (4)	-0.0010 (3)	-0.0011 (3)	0.0011 (3)
C15	0.0154 (4)	0.0199 (5)	0.0182 (4)	0.0000 (3)	0.0031 (3)	0.0010 (4)
C16	0.0184 (4)	0.0305 (6)	0.0189 (5)	-0.0014 (4)	0.0038 (4)	0.0055 (4)
C17	0.0208 (5)	0.0264 (5)	0.0274 (5)	-0.0039 (4)	0.0000 (4)	0.0116 (4)
C18	0.0206 (5)	0.0177 (5)	0.0305 (6)	-0.0034 (3)	-0.0044 (4)	0.0054 (4)
C19	0.0180 (4)	0.0164 (4)	0.0216 (5)	-0.0016 (3)	-0.0032 (3)	-0.0002 (3)
OW	0.0567 (8)	0.0170 (5)	0.0330(7)	0.000	0.0289 (6)	0.000

Geometric parameters (Å, °)

N1—C10	1.3465 (12)	C10—O11	1.2387 (11)
N1—C2	1.4613 (13)	C10—C12	1.4878 (14)
N1—H1	0.891 (15)	C12—C13	1.3210 (15)

C2—N3	1.4397 (12)	С12—Н12	0.957 (16)
C2—H2A	0.966 (13)	C13—H13A	0.976 (14)
C2—H2B	0.966 (13)	C13—H13B	1.001 (19)
N3—C14	1.3915 (12)	C14—C15	1.4030 (14)
N3—C4	1.4400 (12)	C14—C19	1.4036 (14)
C4—N5	1.4599 (12)	C15—C16	1.3880 (14)
C4—H4A	0.984 (13)	C15—H15	0.953 (14)
C4—H4B	0.970 (13)	C16—C17	1.3830 (17)
N5—C6	1.3480 (12)	С16—Н16	0.954 (15)
N5—H5	0.876 (15)	C17—C18	1.3886 (17)
C6—O7	1.2394 (12)	С17—Н17	1.008 (16)
C6—C8	1.4859 (14)	C18—C19	1.3876 (15)
C8—C9	1 3178 (15)	C18—H18	0.947 (16)
С8—Н8	0.966 (16)	C19—H19	0.942(14)
С9—Н9А	0.969 (14)	OW—HW	0.845(17)
C9—H9B	0.996 (16)		0.010 (17)
C10 N1 C2	122 52 (8)		117 4 (12)
C10 N1 U1	122.52 (8)	H9A-C9-H9B	117.4 (12)
C10—N1—H1	117.3 (10)	011—C10—N1	122.20 (9)
C2—NI—HI	120.2 (10)		123.38 (9)
N3-C2-N1	114.64 (8)	NI-CI0-CI2	114.41 (8)
N3—C2—H2A	107.4 (8)	C13—C12—C10	122.88 (9)
NI—C2—H2A	109.2 (8)	C13—C12—H12	121.3 (9)
N3—C2—H2B	111.7 (8)	C10—C12—H12	115.8 (9)
N1—C2—H2B	106.4 (8)	C12—C13—H13A	121.8 (9)
H2A—C2—H2B	107.3 (11)	C12—C13—H13B	121.6 (10)
C14—N3—C2	120.77 (8)	H13A—C13—H13B	116.6 (13)
C14—N3—C4	120.38 (8)	N3-C14-C15	121.10 (9)
C2—N3—C4	118.78 (8)	N3—C14—C19	120.87 (9)
N3—C4—N5	112.59 (8)	C15—C14—C19	118.03 (9)
N3—C4—H4A	110.7 (7)	C16—C15—C14	120.02 (10)
N5—C4—H4A	106.8 (7)	C16—C15—H15	118.5 (8)
N3—C4—H4B	107.8 (8)	C14—C15—H15	121.5 (8)
N5—C4—H4B	110.0 (8)	C17—C16—C15	121.95 (10)
H4A—C4—H4B	108.8 (11)	С17—С16—Н16	118.0 (9)
C6—N5—C4	123.15 (8)	С15—С16—Н16	120.1 (9)
C6—N5—H5	120.4 (10)	C16—C17—C18	118.13 (10)
C4—N5—H5	116.4 (9)	С16—С17—Н17	121.7 (9)
O7—C6—N5	122.03 (9)	С18—С17—Н17	120.2 (9)
O7—C6—C8	123.19 (9)	C19—C18—C17	121.10 (10)
N5—C6—C8	114.78 (8)	C19—C18—H18	118.4 (9)
C9—C8—C6	121.70 (9)	C17—C18—H18	120.5 (9)
С9—С8—Н8	121.4 (9)	C18—C19—C14	120.72 (10)
С6—С8—Н8	116.9 (9)	С18—С19—Н19	118.1 (8)
С8—С9—Н9А	120.7 (9)	С14—С19—Н19	121.2 (8)
С8—С9—Н9В	121.9 (9)		
C10-N1-C2-N3	75 00 (12)	N1-C10-C12-C13	-175 46 (10)
N1 - C2 - N3 - C14	70 15 (11)	$C_{2} N_{3} C_{14} C_{15}$	-175 96 (8)
N1 - C2 - N3 - C4	-112 95 (9)	C_{4} N3 C_{14} C_{15}	7 19 (13)
111 OZ 110 OT	112.75 (7)	CI 110 CIT CIU	

supplementary materials

C14—N3—C4—N5	-78.90 (10)	C2—N3—C14—C19	4.02 (13)
C2—N3—C4—N5	104.19 (10)	C4—N3—C14—C19	-172.83 (8)
N3—C4—N5—C6	127.89 (10)	N3-C14-C15-C16	-177.94 (9)
C4—N5—C6—O7	1.15 (15)	C19—C14—C15—C16	2.09 (13)
C4—N5—C6—C8	-179.03 (9)	C14-C15-C16-C17	-0.07 (15)
O7—C6—C8—C9	5.99 (17)	C15—C16—C17—C18	-1.19 (16)
N5-C6-C8-C9	-173.83 (11)	C16—C17—C18—C19	0.39 (15)
C2-N1-C10-O11	-3.45 (14)	C17—C18—C19—C14	1.67 (15)
C2-N1-C10-C12	175.89 (8)	N3-C14-C19-C18	177.14 (9)
O11-C10-C12-C13	3.88 (16)	C15-C14-C19-C18	-2.88 (14)

Hvdrogen-bond geometry	(Å.	°)
nyalogen oona geometry	(11)	

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N5—H5…O11	0.876 (15)	2.318 (15)	3.0476 (11)	140.8 (12)
C4—H4A…O7	0.984 (13)	2.366 (13)	2.8089 (12)	106.5 (9)
С15—Н15…О7	0.953 (14)	2.563 (14)	3.4922 (14)	165.1 (10)
OW—HW···O7 ⁱ	0.845 (17)	1.990 (17)	2.8193 (9)	166.7 (16)
N1—H1···O11 ⁱⁱ	0.891 (15)	2.089 (15)	2.9651 (11)	167.4 (14)
C2—H2B····Cg1 ⁱⁱⁱ	0.966 (13)	3.178	3.874	130.40
C8—H8···Cg1 ^{iv}	0.966 (16)	2.571	3.444	150.57
Summetry codes: (i) $-r+2 = v = -\frac{1}{2}$: (ii) $-r+\frac{3}{2}$	$y \pm 1/2 = r$: (iii) $-r \pm 2$	-1+2 -7 : (iv) $-r+1$	$(2) = \frac{3}{2} = \frac{3}{2} = \frac{3}{2}$	

Symmetry codes: (i) -x+2, y, -z-1/2; (ii) -x+3/2, y+1/2, z; (iii) -x+2, -y+2, -z; (iv) -x+1/2, y-3/2, z.

